Mixing time for the Solid-on-Solid model

Alistair Sinclair
UC Berkeley

joint work with Fabio Martinelli, Univ. Roma 3

Solid-on-Solid (SOS) model

Gibbs distribn:
$$\pi(\eta) = Z_{\beta}^{-1} \exp\left\{-\beta \sum_{i=1}^{n+1} |\eta(i) - \eta(i-1)|\right\}$$

Boundary conditions: $\eta(0) = \eta(n+1) = 0$

Single-site (Glauber) dynamics

- pick a column *i* u.a.r.
- set $\eta(i) \in \{\eta(i), \eta(i) \pm 1\}$ with appropriate probs.
- $\eta_t \to \pi$ as $t \to \infty$

Goal: analyze the mixing time:

$$\tau = \min\{t : \|\eta_t - \pi\| \le 1/4 \ \forall \eta_0\}$$

Why?

- I. Model for random surfaces etc. [Privman/Švrakić...]
- 2. Connection with low temperature Ising model

At low temps, few "overhangs" ⇒ good approximation (Zero temp. solved by [Chayes/Schonmann/Swindle])

3. Challenge to existing techniques

Monotone coupling [Propp/Wilson]

$$E[\Delta \text{ area}] \le 0 \Rightarrow \text{mixing time} = \tilde{O}(n^5)$$

3. Challenge to existing techniques

Monotone coupling [Propp/Wilson]

$$E[\Delta \text{ area}] \leq 0 \Rightarrow \text{mixing time} = \tilde{O}(n^5)$$

Comparison [Diaconis/Saloff-Coste]

Compare with "non-local" dynamics:

$$\eta(i) \rightarrow \text{any value in } [0, n] \text{ w. prob. } \pi(\cdot \mid \eta(i \pm 1))$$

 \Rightarrow Mixing time = $\tilde{O}(n^8)$

3. Challenge to existing techniques

Monotone coupling [Propp/Wilson]

$$E[\Delta \text{ area}] \leq 0 \Rightarrow \text{mixing time} = \tilde{O}(n^5)$$

Comparison [Diaconis/Saloff-Coste]

Compare with "non-local" dynamics:

$$\eta(i) \rightarrow \text{any value in } [0, n] \text{ w. prob. } \pi(\cdot \mid \eta(i \pm 1))$$

$$\Rightarrow$$
 Mixing time = $\tilde{O}(n^8)$

Both are loose and give little geometrical insight

Results

Main Theorem: For all $\beta>0$, the single-site dynamics has mixing time $\tilde{O}(n^{3.5})$

Also: Almost matching lower bound $\Omega(n^3)$

Bonus: Analysis gives insight into actual evolution of contour

"It's not a good idea to do a proof in a talk" [D. Gamarnik, Phys. of Algorithms, 2009]

Non-local "Column" Dynamics

In absence of "walls" at height 0, n, by symmetry:

$$E[\eta(i)] = \frac{1}{2}[a+b] = \frac{1}{2}[\eta(i-1) + \eta(i+1)]$$

and mixing time $O(n^3 \log n)$ follows from 2nd eigenvalue of discrete Laplacian

Can show: repulsion from walls only helps!

Simulating Column Dynamics by Single-Site Dynamics

Mixing time of "odd-even" column dynamics is $\tilde{O}(n^2)$

To simulate one move:

- perform $O(t^*n\log n)$ single-site updates, where $t^* = \text{mixing time } \underline{\text{within}}$ column
- censor updates in even (odd) columns

[Peres/Winkler]: Censoring can only slow down dynamics

Hence single-site mixing time is $\tilde{O}(n^3t^*)$

Mixing time within column, t^*

So we need to keep grad small

Problems:

- grad = $\Theta(n)$ at boundaries!
- Proving non-equilibrium properties for MCs is hard!

Bounding dynamics

Goal: bring contour down from height h to $h' = h - \sqrt{n}$

Couple with bounding dynamics \mathcal{D} on [-n,2n] with b.c.'s at height $h\!-\!\sqrt{n}\log^2 n$

In equilibrium ${\cal D}$ is below h'

Claim: \mathcal{D} has $grad \leq polylog(n)$ w.h.p.

Hence: Time to reach small height ($\sim \sqrt{n}$) is $\tilde{O}(n^{3.5})$ \checkmark

Gradient of bounding dynamics

Event
$$B = \{\operatorname{grad} > \log^{4.5} n\}$$

Easy to see: in equilibrium $\pi(B) \le e^{-c \log^{4.5} n}$

Start in equilibrium conditional on being above h on [1,n] Note that $\pi(H) \geq e^{-c\log^4 n}$

H

Thus at all times t, $\Pr_t(B) \leq \pi(B)/\pi(H) \leq e^{-c\log^{4.5} n}$

Gradient of bounding dynamics (cont.)

$$B = \{ \operatorname{grad} > \log^{4.5} n \}$$
 (bad event)
 $H = \{ \operatorname{above} h \text{ on } [1,n] \}$ (conditioning event)

$$Pr_{t}(B) = \sum_{\eta \in B} \sum_{\eta_{0}} Pr(\eta_{0}) Pr(\eta_{t} = \eta \mid \eta_{0})$$

$$= \sum_{\eta \in B} \sum_{\eta_{0}} \frac{\pi(\eta_{0})}{\pi(H)} Pr(\eta_{t} = \eta \mid \eta_{0})$$

$$= \frac{1}{\pi(H)} \sum_{\eta \in B} \pi(\eta)$$

$$= \frac{\pi(B)}{\pi(H)}$$

Final smoothing

So overall mixing time is $\tilde{O}(n^{3.5})$

Note: Smoothing phase can be improved to $\tilde{O}(n^3)$

Extensions?

- Match the lower bound of $\Omega(n^3)$
- Adapt to lozenge tilings [Luby/Randall/S., Wilson]
- Extend to low-temperature Ising model (see very recent developments by [Martinelli/Toninelli])
- Censoring + Geometry analysis of other (monotone) models